Statistics of Extreme Spacings in Determinantal Random Point Processes
نویسندگان
چکیده
We study determinantal translation-invariant random point processes on the real line. Under some technical assumptions on the correlation kernel, we prove that the smallest nearest spacings in a large interval have Poisson statistics as the length of the interval goes to infinity. 2000 Math. Subj. Class. 60G55, 60G70.
منابع مشابه
Statistics of Extreme Spasings in Determinantal Random Point Processes
Determinantal (a.k.a. fermion) random point processes were introduced in probability theory by Macchi about thirty years ago ([13], [14], [3]). In the last ten years the subject has attracted a considerable attention due to its rich connections to Random Matrix Theory, Combinatorics, Representation Theory, Random Growth Models, Number Theory and several other areas of mathematics. We refer the ...
متن کاملDeterminantal Random Point Fields
The paper contains an exposition of recent as well as sufficiently old results on determinantal random point fields . We start with some general theorems including the proofs of the necessary and sufficient condition for the existence of determinantal random point field and a criterion for the weak convergence of its the distribution. In the second section we proceed with the examples of the de...
متن کاملRandom Matrices and Determinantal Processes
Eigenvalues of random matrices have a rich mathematical structure and are a source of interesting distributions and processes. These distributions are natural statistical models in many problems in quantum physics, [15]. They occur for example, at least conjecturally, in the statistics of spectra of quantized models whose classical dynamics is chaotic, [4]. Random matrix statistics is also seen...
متن کاملOn the correlation structure of some random point processes on the line
The correlation structure of some remarkable point processes on the onedimensional real line is investigated. More specifically, focus is on translation invariant determinantal, permanental and/or renewal point processes. In some cases, anomalous (non-Poissonian) fluctuations for the number of points in a large window can be observed. This may be read from the total correlation function of the ...
متن کاملLoop-free Markov chains as determinantal point processes
We show that any loop-free Markov chain on a discrete space can be viewed as a determinantal point process. As an application we prove central limit theorems for the number of particles in a window for renewal processes and Markov renewal processes with Bernoulli noise. Introduction Let X be a discrete space. A (simple) random point process P on X is a probability measure on the set 2 of all su...
متن کامل